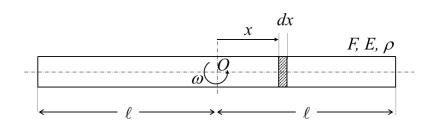

Problème 1 : On considère qu'un câble ne transmet pas d'effort tranchant, ni de moment de force et qu'il forme par conséquent une parabole (équation généralisée d'une parabole : $y = ax^2 + bx + c$, utile pour calculer l'angle du câble au point B)

- a. Calculer les réactions d'appui de la structure ainsi que l'effort dans le câble en *A* et en *B*.
- b. En tenant compte de l'effort normal maximal (hyp : N(x) constant) dans le câble (\emptyset = 7 mm), calculer l'allongement de celui-ci (le module de Young du câble est de E = 190 GPa).

Problème 2 : On élève de $\Delta\theta$ la température d'un système composé de deux barres et acier et d'une barre en cuivre formant des angles j avec les deux autres. Déterminer les forces N_1 et N_2 dans les barres respectivement en acier et en cuivre du système. Trouver l'angle φ_0 pour lequel ces forces sont nulles


Application : F_1 = 2 cm², F_2 = 3 cm², φ = 20°, $\Delta\theta$ = 100°C

Problème 3 : Une hélice d'avion est schématisée par une barre de longueur 2ℓ , de section constante F, de module E et de masse volumique ρ , tourne autour de son centre à la vitesse angulaire ω . Calculer:

- a. La contrainte de traction à une distance x du centre de rotation et la contrainte maximale
- b. L'allongement Δ à une distance x et l'allongement maximum
- c. L'énergie de déformation totale *U* dans la barre.

Application : $F = 40 \text{ cm}^2$, E = 80 GPa, $\ell = 80 \text{ cm}$, $\rho = 2700 \text{ kg/m}^3$, n = 300 t/min

